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Abstract. The ordering properties of king dipoles are studied in mean field theory. and by 
Monte Carlo simulations. The boundaryconditions are such that there is no net depolarizing 
field and both regular lattices and various random arrangements are considered. I n  the 
mean field approach we employ the replica method with a Gaussian approximation for the 
distribution of dipole-dipole interactions, while a Kirkwood approximation is used for the 
spatial distribution ofdipoles. The low-temperature phase for a system of randomly parked 
dipoles and diluted face centred cubic and body centred cubic lattices is found to be ferro- 
electric above a critical concentration. Below this concentration the mean field theory 
predicts a spin glass. The simulations are only carried out for the body centred cubic lattice. 
The transition temperature to the ferroelectric state is determined from finite size scaling of 
the mean square polarization. The critical concentration for the occurrence of a spin glass 
phase is estimated by zero temperature Monte Carlo simulations using the simulated 
annealing method. The results are found to be in qualitative agreement with those of the 
mean field theory described above. 

1. Introduction 

There is a long history associated with the question of whether a system of randomly 
distributed dipoles can order ferroelectrically. Debye (1912) noted that it was necessary 
to consider the effect of molecular electric dipole moments in order to explain the 
temperature dependence of the dielectric constant in certain liquids containing polar 
molecules. He started from the Lorentz expression for the internal field inside a cavity 
that is cut out from a medium 

E, ,  = E + P/3E, (1) 

where Pis the polarization, Ethemacroscopicfield, and et is thepermittivityofvacuum. 
Debye proceeded to construct a simple mean field theory, the predictions of which 
include ferroelectric ordering. For reasons which we will make clear later, the case of 
dipoles with discrete degrees of freedom will be of particular interest to us. We will, 
therefore,restrictourselves toIsingspins(q = kl) ratherthanthe free rotorsconsidered 
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by Debye. For king spins, the self-consistent equation determining the value of m = (si) 
at temperature Tis 

tn = tanh(&E + p2Nm/3V~,]) (2) 
where p i s  l/kBT, p is the dipole moment, Vis the volume of the sample, and N is the 
number of dipoles. In this case, the transition to a ferroelectric state with spontaneous 
polarization occurs below a Curie temperature, which is given by 

TC = pzN/3V~okB. (3) 
Although ferroelectricity is, and was, a well known phenomenon, it has not been 

observed in isotropic or nematic polar fluids. This motivated Onsager (1936) to argue 
that only a part of the internal field (1). which he called the cavity field, E,,, gives rise to 
a torque on a dipole inside the cavity. The remaining part, which he called the reaction 
field, has no orienting effect. In the case of permanent dipoles randomly distributed in 
vacuum, Onsager’s theory gives, in place of (1) 

” r E,, = E + - 
2E f E, 

(4) 

where E is the dielectric constant of the medium. When this constant is determined self- 
consistently in a generalized Clausius-Mossotti theory there is always a locally stable 
solution withzero spontaneous polarization and, as aconsequence, many people believe 
that a system of randomly distributed dipoles will not exhibit a ferroelectric state. 
Nevertheless. Pirenne (1949), and later in more detail Zernik (1965), have shown that 
the Onsager theory does permit a ferroelectric solution. The possibility of ordering can 
be seen by noting that in general the dielectric function is given by E = E” + aP/aE. in 
a spontaneously polarized state near saturation aP/aE will be small, and we return to a 
situation described qualitatively by Debye theory (except the transition to the spon- 
taneously polarized state is now first order). 

It is possible that the failure to observe ferroelectricity in polar fluids and nematics 
is largely due to ‘molecular association’ resulting from the fact that the molecules are 
free to move. Since dipolar interactions are also important in certain crystalline and 
amorphous materials we move on to theories where the dipoles have frozen positions. 
A number ofauthors have studied the energeticsofdipolesonvariouscrystalline lattices. 
Sauer (1940). whose results were later confirmed by Luttinger and Tisza (1946). found 
that thin needles of face centred cubic (FCC) and body centred cubic (BCC) crystals 
ordered ferroelectrically while the simple cubic lattice of dipoles had an antiferroelectric 
ground state. Their results depended on sample shape because of depolarizing effects. 
This result is subject to criticism since Griffiths (1968) showed rigorously for lattice 
systems that in the thermodynamic limit the free energy in zero external field is inde- 
pendent of sample shape. The depolarization energy cost of a uniformly polarized 
sample will be avoided by shape-dependent macroscopic domain wall structures (Kittel 
1949) with energyperdipolegoing tozeroin the thermodynamiclimit. Inorder tostudy 
the thermodynamics and the existence of a ferroelectric transition. one can therefore 
restrict oneself to boundary conditions which allow uniform polarization without a 
depolarization field. Examples of such boundary conditions are metallic boundaries 
with shorted capacitor plates (Zernik 1965, Vugmeister and Glinchuk 1985) or periodic 
boundary condition with Ewald summation (Kretschmer and Binder 1979). 

Experimentally, the interest in dipolar systems has concentrated on situations where 
thedipolesare arranged in a dilutedlattice, asimpurities. When thedipolesarerandomly 
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distributed in a weakly polarizable medium (such as off-centre Li+ ions in K+OH-) they 
appear to exhibit only a spin glass phase but no ferroelectricity (Fiory 1971). In contrast, 
similarimpuritiesinastronglypolarizable medium (suchas RtTaO;) appear toexhibit 
a ferroelectric phase (Vugmeister and Glinchuk 1965, Kleemann et a1 1987) although 
this conclusion is controversial (Hochli and Maglione 1989). It is also expected theor- 
etically that the presence of polarizable ions in the lattice may play an important role in 
determining the nature of the low-temperature phase (Mahan 1967). Tagaki (1952), for 
example, showed in a mean field calculation for dipoles on a simple cubic lattice and 
polarizable ions in the body centred positions that the low-temperature phase could be 
ferro- or antiferroelectric depending on the magnitude of the polarizability. For reasons 
of simplicity we will not address the question of polarizability here. 

In order to explain the occurrence of a spin glass phase arising from dipole-dipole 
interactions one must consider fluctuations in the spatial distribution of the dipoles. 
These were neglected in the theories mentioned so far. Klein et a1 (1976) made an 
attempt to correct for spatial fluctuations in the case of pure dipolar interactions. The 
boundary conditions employed by Klein et al preclude uniform ferroelectric ordering. 
The reason is that they employ spherical geometry, i.e. they sum up all interactions 
within a radius R and let R- 33. A uniformly polarized state would then have to 
overcome the depolarizing field of a sphere and a ferroelectric state would have a 
complicated domain structure (Arnott 1968). Similar considerations apply to the Monte 
Carlo simulations on pure dipoles performed by Medina er al(1984). Calculations have 
also beencarriedout (Kleinetall979, and Kirkpatrick andVarma 1978) withinteractions 
which scale with distance as r-3, but are not of the pure dipolar form. The question of 
whether a purely dipolar random system can order ferroelectrically thus remains open. 
We wish to address this question. 

We will, in section 2, construct a mean field theory using available techniques from 
spin glass theory (Kirkpatrick and Sherrington 1978). As shall be seen, the theory 
predicts ordering, for sufficiently high concentrations of dipolar impurities. This 
ordering may be either ferro- or antiferroelectric depending on structure. Below the 
criticalconcentration the theory predicts a low-temperature spin glass phase. The critical 
concentration is estimated by zero temperature Monte Carlo simulations described in 
section 3. The predicted ferroelectric ordering at sufficiently high concentrations is 
confined by finite temperature Monte Carlo simulations discussed in section 4. A sum- 
mary is given in section 5. 

2. Model and mean field theory 

A system of Ndipoles that can be oriented in the 2.z directions is considered. Assuming 
that the sample shape is such that the depolarization field is uniform the Hamiltonian 
can be written 

H =  - C J ~ ( ~ ~ ~ ) S ~ S , - C J ~ S ~  = - D ( r i , r , ) s i s j  (5) 
i < j  i icj 

where the dipole-dipole interaction is 

where Oii is the angle between the vector rij connecting two dipole sites and the z axis. If 
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there is a net polarization, the first sum in the middle expression in (5) will depend on 
sample shape, because of the depolarization field. With metallic boundary conditions JO 
is such that it cancels this field, while Jo  = 0 with periodic boundary conditions (Ewald 
summation). In general, for a homogeneoussystem, J o  will be proportional to the total 
polarization allowing us to define an effective dipole-dipole interaction J(q, ri). 

the dipole pair interaction can be either positive or negative. In 
the case of random spatial distribution of the spins this suggests the application of spin 
glass theory. We note that the restriction to Isingspinsgreatly simplifies the calculations, 
in that the part of the interaction which depends on the spatial separation enters as a 
scalar factor multiplying the spins. I t  is this feature which allows us to carry out the 
replica trick to be discussed later. 

In the case of off-centre Lit impurities, however, either of the six (100) orientations 
or the eight (111) orientations are possible. The coupling J(r,j) then becomes a tensor 
with spatially dependent components. Since we are dealing with an idealized situation 
we will not attempt to incorporate such effects. 

We complete the definition of the model by specifying the spatial distribution of the 
dipoles. First, we consider the 'amorphous'case in which we assume that the continuous 
pair distribution function g(r)  is given. We approximate the N-particle distribution 
function by using the Kirkwood superposition approximation 

Depending on 

gN(rt, r 2 ,  . . . , rN) = n g(rc - r,). (7) 
pennuiatimr 

The probability distribution for strength of the king coupling constant J4 for a randomly 
selected pair of dipoles is then given by 

P ( J )  = --(d3rg(r)6(J 1 - J(r)) V 

where the normalization 

d3rg(r) = V (9) 

has been used. 

method if distribution (8) is approximated by a shifted Gaussian 
Averaging over spin configurations can be carried out in closed form using the replica 

where, since the depolarization field is subtracted, 

J ,  = - d3rJ(r)g(r) (11) 

J:  = NI-= ~ J J * P ( J )  - - J: .  

"I V 

will be independent of sample shape and size (as illustrated in an example later), and 

(12) 
1 

N 

cz 

In what follows we will neglect termsof the order 1 / N ,  such as, e.g., the last term on the 
right-handside of (12). 
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Once JI and J 2  are known, the phase diagram can be calculated using the replica 
method as described, e.g., in Kirkpatrick and Sherrington (1978). We will not repeat 
the steps of the calculation here. There are two order parameters in the theory. One of 
them is the polarization m = ((si)) where first a thermodynamic average is performed for 
given spatial arrangements of spins followed by averaging over the arrangements. 
The second parameter is the Edwards-Anderson (Edwards and Anderson 1975) order 
parameter q = ((si)’). These two order parameters are determined from the following 
integral equations: 

1 ”  
q = 01/2 I, dr  

t 

(13) 

(14) 

where 

t = tanh[/3(J,m + J2q1fir)] .  (15) 
The phase diagram is determined by the ratio J1 /J2 .  When J , / J 2  > 1 there is a low- 
temperature ferroelectric phase with transition temperatureJ,/kB. Note that in the limit 
J2+  0 and with J1 the Lorentz field, the self-consistent equation for m is of the same 
form as in the simple Debye theory of the introduction. Even if J 2  # 0 but J 2  < J ,  the 
ferroelectric transition temperature, which depends only on J , ,  will then be the same as 
in Debye theory, but the order parameter will in general be different due to the fluc- 
tuation term J,. It should also be noted that the physical properties inside the spin glass 
phase predicted by the replica symmetric solution given by the above theory are in part 
incorrect (see, e.g., Mezard et d 1987). The transition temperature and the behaviour 
in the ferroelectric phase above a de Almeida-Thouless (1978) line of instability are, 
however, believed to be exact within the Gaussian model for the coupling constant 
distribution and these are the features with which we are mainly concerned in the present 
paper. 

In order to be more concrete, we consider as an example a system in which the dipoles 
are located in the centres of hard spheres of diameter d .  We assume simple form forg(r) 

f o r r < d  

for r > d.  

As shown in the appendiw we then have 

(16) g(r) = {; 
2fP2 J ,  =- 

Z E O ~ ’  

and by evaluating the integral in (12) analytically 

r W f  1’‘’ J ,  = 
4ZEod’ 

where f is the filling fractionf= ZN d3/6V. Equation (16) is not a bad approximation 
for the system of sequentially random parked hard spheres below its jamming limit 
(f, = 1/3, Gotoh er a[ (1978)). We find that J , / J 2  > 1 for f > f *  = 1/10, The present 
theory thus predicts a ferroelectric phase for dipoles on a system of randomly packed 
hard spheres at high concentrations. 
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We next consider the case where the dipoles occupy discrete lattice sites with con- 
centration c .  The coupling constant probability distribution in this case is 

where N, is the number of sites in the lattice (the number of dipoles is N = N g ) .  
Proceeding as before we find for lattices of cubic symmetry (see the appendiw) 

J ,  = c N , ~ ~ / ~ V Q  (20) 

and 

J~ = p ~ ~ ’ / ~ c u / 4 z ~ ~ a ’  

where a3 = V / N ,  and 

The values are a = 3.65. 2.08, 1.93 for the sc (simple cubic), FCC and Bcc lattices, 
respectively giving c* = 0.76, 0.25, 0.21, for the critical concentration above which 
ferroelectric ordering occurs in the three cases. 

The low-temperature phase for a perfect crystalline sc lattice is antiferroelectric 
(Sauer 1940, Luttinger and Tisza 1946) with opposite polarization on sublattices (hkl) 
with h + k even or odd. We can, in the spirit of Takagi (1952), recast this situation to 
the present formalism by reversing the sign of the spins on one of the sublattices and we 
find by evaluating the dipole sum numerically so that 

J ,  = 0 . 4 2 6 ~ N , p ~ / V ~ ~ .  (U) 
Since J ,  in this case is larger than the value in the ferroelectric phase, the ferroelectric 
transition is pre-empted. The present model thus predicts that the simple cubic lattice 
will have an antiferroelectric ordering at low temperatures above an impurity con- 
centrationofc* = 0.45. Below thisconcentration the theorypredictsalow-temperature 
spin glass phase. 

3. Zero temperature Monte Carlo simulations 

To estimate the minimum dipole concentration for ferroelectric ordering we search for 
and analyse ground state configurations of the ~ccsystem. We use a combination of the 
steepest descent and simulated annealingmethods for finding approximate ground states 
(Kirkpatrick and Sherrington 1978). The basic Monte Carlo cell is cubic and periodic 
boundary conditions are imposed. The effective dipole-dipole interaction is computed 
by Ewald summation. The relevant formulae can be found in Kretschmer and Binder 
(1979) and will not be repeated here. We mention that for a perfect BCC lattice we 
reproduce the exact value f / 3 ~ ~  for the local field with uniform polarization to within a 
factor of IO-’. 

For each sample a list of local field XiJi jS;  is compiled for each initial configuration, 
and the spin with the largest positive local energy is flipped. The list is updated con- 
tinuously until no positive local energy can be found. This steepest descent procedure 
is a zero temperature quench and leads to a local minimum in the energy. Further 
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Figure 1. Ground state polarizations for the diluted BCC lattice at various concentrations. 
Error bars are sample to sample fluctuations. 

improvement can be achieved by warming the system, using the Metropolis algorithm, 
to a temperature Twhich we took to be four times the mean field transition temperature. 
The system is then cooled down gradually to zero, reheated to T/2 and cooled down 
again. This procedure is repeated six times. The lowest energy configuration found 
during the process is saved. The energy obtained after the annealing is typically 3-10% 
lower than after the original steepest descent. For each sample we start from 50 different 
rnndnm initial min mnfimrations and alcn from an nrdered Qtate The lowect enervv is 

different samples for each concentration. The number of spins in each sample was close 
to 450. The resulting ground state polarizations are plotted in figure 1, the error bars are 
the sample to sample standard deviation. We estimate the critical concentration for 
ferroelectric ordering to be 0.3 2 0.1 which is somewhat larger than the mean field result 
0.21 found in the previous section. 

We have also investigated the local field distribution P(E) in the ‘ground state’. 
Kirkpatrick and Varma (1978) give an argument that P(E = 0) = 0 and they suggested 
that for random 1/R3 interactions P ( E )  be proportional to E“, with CY = 0.5, for small 
E. This behaviour is compatible with their simulations and would account for the 
observed T’/’behaviour of the specific heat of OH- in KCI (Fiori 1971). In general the 
temperature dependence of the specific heat is given by C - T*+*at low temperatures. 
We plot in figure 2 our results for the local field distribution for c = 0.1. In figure 3 we 
show a log-log plot of the field distribution for small E. Our best fits are CY = 0.37 for 
c = 0.1, CY = 0.36 for c = 0.2 and CY = 0.46 for c = 0.3. In the latter case we may be 
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E 
Figure 2. Ground state local field distribution at c = 0.1 

above the critical concentration for ferroelectricordering. These values are significantly 
different from the value CY = 1 .O that have been obtained in the infinite range Sher- 
rington-Kirkpatrick (SK) model (Palmer and Pond 1979). 

4. Finite temperature Monte Carlo simulation 

We have performed simulations at non-zero temperaturesonly for concentrations above 
the critical one for a ferroelectric phase. The calculations were performed starting 
from a random spin configuration. Each sample evolved at successively decreasing 
temperatures and the quantity monitored most closely was (P'). The initial relaxation 
time for this quantity was about 25 Monte Carlo steps per particle for the 800 particle 
systemsand we used 10-20 OOOstepsperparticle after thermalization, Periodicboundary 
conditions with Ewald summation was employed as described earlier. In the case of 
the diluted systems the thermodynamic quantities were averaged over 6-10 samples 
depending on sample size. The long range nature of the interactions was found, as 
observed by Kreschmer and Binder, to lead to important finite size effects. We therefore 
carried out simulations at each concentration for at least four different sample sues and 
used finite size scaling theory for (P') to locate the transition temperature (see. e.g., 
Binder 1984). In this approach one assumes a scaling form 

for the mean square polarization, where E = (T - T,)/T, and the exponents x and y are 
related to the critical exponents, B (order parameter) and y (susceptibility) through 

(P') = N"f( EN y ,  (24) 
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WE) 
Figure 3. Log-log plot of ground state local field distribution for small E at c = 0.1. The 
broken curve is a linear fit with LI = 0.37. 

x - y y = l  x + 2/3y = 2. 

In mean field theory y = 1, /3 = 112 and x = 312, y = 112. The fit to T, using mean field 
exponents is shown in figure 4(a-c). In the diluted case the points are arrived at by 
averaging over 6-10 samples. Without such averaging it was not possible to fit the data. 
All error bars represent sample to sample fluctuations and do not include thermal 
fluctuations which we estimate to be smaller. We were not able to significantly improve 
the fit by employing non-mean field values for x and y .  The classical values of the 
exponents are in agreement with the renormalization group treatment of Larkin and 
Khmelnitski (1969), andexperiment (Griffin eta1 1977). It isinteresting tonote that the 
worst fit is for c = 1 in which case logarithmic corrections to scaling are expected to be 
present. 

The specific heat obtained from energy fluctuations and averaged over the samples 
is plotted in figure 5 for c = 1 and c = 0.5 respectively and for different sample sizes. We 
note that in contrast to c = 1 there appear to be no finite size effects on the specific heat 
for c = 0.5. The concentration dependence of the transition temperature is plotted in 
figure 6 together with the predictions of the mean field theory of section 2.  

5. Discussion and summary 

We have constructed a simple mean field theory for disordered dipolar king spins and 
compared it with the results of Monte Carlo simulations. Both the theory and the 
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Figure4. Scaling function (see equation (24)) at differefit concentrations: (a) c = 1, (b)  e = 
0.7, (c) c = 0.5. The fits are respectively T, = 0.79,0.53,0.37 in units of p2/(4z~D(a/2)S). 

simulations for the diluted BCC lattice show that there is a critical concentration above 
which a ferroelectric phase exists at low temperatures. As could be expected the tran- 
sition temperature is higher(-30%) than foundin the simulations, but the concentration 
dependence is in qualitative agreement with the simulation data. We have also inves- 
tigated some properties of the ground state in the spin glass phase and found a local field 
distribution P(E)  - E'for low fields with 01 = 0.37. The fact that this exponent is much 
smaller than the value 1y = 1 for the SK model suggests that the low-temperature diluted 
dipolar system is less frozen than the spin glass.with inlinite range interactions. It is 
interesting in thiscontext to note that Reichetni(l987) found that for very dilute dipolar 
magnets (LiHo,Y,-=F4 with x = 0.045) the spins will not freeze at low temperatures 
while at higher concentrations (r = 0.167) they did observe the freezing of spins. It is 
also interesting that we have found a qualitative difference between the specific heat 
data for c = 0.5 and c = 1 indicating that theenergy fluctuations do not diverge for the 
dilute system. We cannot tell if the logarithmic divergence of the specific heat disappears 
for all dilutions. Presently, we are also unable to state whether there is a sharp spin glass 
transition or just a gradual freezing of the spins at low concentration. We are currently 
carrying out longer and more detailed simulations in both the high- and low-con- 
centration regimes in the hope of clarifying these questions. 
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Appendix. Evaluation ofJ, for randomly parked dipoles and diluted cubic lattices 

We wish to evaluate J ,  defined in (11) and show that this quantity wiIl be shape inde- 
pendent if the boundary conditions are such that there is no net depolarizing field, e.g. 
because of metallic boundaries. Let us start by assuming that the sample shape is such 
that the free sample has a uniform depolarizing field, Edp (as in an ellipsoid, sphere, 
needle or slab) and is of the form 

where D,is the shape dependent depolarizationfactor, e.g. D, = 4nfor a thin slab, D, = 
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Figure 6. Critical temperature for the ferroelectric transition at various concentrations. The 
‘experimental points’ are from Monte Carlo simulations while the full line is the mean field 
theory of section 3. The temperature unit is the same as in figure 4. 

4z/3 for a sphere, and D, = 0 for a needle. With metallic boundary conditions we have 
J ,  = - Ednp in the Hamiltonian (5). Therefore 

For a diluted lattice from (19) we have 

where the sum i runs over all the lattice sites and c is the dipole concentration. The local 
field at a site when the sample is uniformly polarized (all the spins point up) is 

644) 

where El = Np/3V&, is the Lorentz field due to polarization charges on the surface of 
an imaginary spherical cavity and E, is the field due to the dipoles inside the cavity. For 
a lattice of cubic symmetry E z  = 0 and 

Similarly for randomly packed dipoles we find 

since E2 = 0 when averaged over dipole spatial distributions. 

1 -E Jd(ri)  = El + Ez + Ed,, 
p i  

J1 = C N , ~ ~ / ~ V E ~ .  (-45) 

J ,  = p2N/3~oV (A61 
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